Протонный градиент и электрохимический потенциал. Электрохимический протонный градиент Увеличение электрохимического градиента приведет к

Мембранный потенциал возникает за счет электрохимического градиента, который существует по обеим сторонам мембраны, селективно проницаемой для ионов

Величина мембранного потенциала как функции концентрации ионов рассчитывается по уравнению Нернста

В клетке поддерживается отрицательное значение мембранного потенциала покоя. При этом внутренняя среда клетки, по сравнению с внешней, характеризуется несколько большим отрицательным зарядом

Существование мембранного потенциала является необходимым условием генерации электрических сигналов, а также направленного транспорта ионов через мембрану

Важным свойством клеток является способность поддерживать такие внутриклеточные концентрации метаболитов, которые существенно отличаются от их содержания во внеклеточной среде. В случае ионов, различия в их концентрации по обеим сторонам мембраны приводят к различиям в электрическом заряде: внутриклеточная среда заряжена несколько более отрицательно, чем среда снаружи клетки. Совместное действие разности зарядов и концентраций проводит к возникновению электрохимического градиента. Электрохимический градиент поддерживается за счет действия селективных каналов и белков переносчиков в плазматической мембране.

Для того чтобы понять, каким образом возникает электрохимический градиент, вначале рассмотрим простой случай, когда мембрана оказывается проницаемой только для одного вида ионов. На рисунке ниже представлены два компартмента, А и В, разделенные тонкой мембраной. Эти компартменты содержат раствор КС1 разной концентрации. В растворе хлорид калия диссоциирован на гидратированные ионы К+ и Cl-. Поскольку оба компартмента содержат эквимолярные концентрации ионов, то каждый обладает нейтральным зарядом.

Если бы мембрана была непроницаема для ионов, то величина ее электрического потенциала, измеренная с помощью вольтметра, равнялась бы нулю.

Селективное передвижение ионов через мембрану вызывает изменение мембранного потенциала.

Теперь рассмотрим случай, когда мембрана проницаема только для ионов калия (например, когда в мембране находятся К+-каналы). Диффузия растворенных веществ по градиенту концентрации является энергетически выгодным процессом (выражается в виде отрицательной величины разности энергии AG). Поэтому ионы К+ будут диффундировать в сторону более низкой их концентрации, т. е. из компартмента В в компартмент А. При этом распределение заряда на мембране будет меняться. По мере накопления в компартменте А положительно заряженных ионов, возрастают силы отталкивания между ними. Эти силы затрудняют переход ионов К+ в компартмент А.

Когда в системе достигается электрохимическое равновесие , градиенты концентрации и электрических зарядов взаимно уравновешиваются, и движение ионов К+ через мембрану прекращается. При этом транспорт ионов К+ из одного компартмента сдерживается их транспортом из другого компартмента.

Однако в компартменте А содержится больше положительно заряженных ионов, чем в компартменте В. Этот избыток ионов К+ (в компартменте А) взаимодействует с избытком ионов Cl- (в компартменте В) через тонкую мембрану, в результате чего по обеим ее сторонам выстраиваются электрические заряды. Разница зарядов по обеим сторонам мембраны выражается в виде разности потенциалов и называется мембранный потенциал. Равновесный (мембранный) потенциал компартмента В по отношению к компартменту А имеет отрицательное значение.

Этот пример иллюстрирует необходимость наличия двух условий, необходимых для возникновения мембранного потенциала клетки, не равного нулю:
различные концентрации ионов по обеим сторонам мембраны, которые приводят к разделению зарядов и
мембрана, обладающая селективной проницаемостью по крайней мере к одному виду ионов.

Поэтому величина мембранного потенциала является функцией концентрации ионов. В состоянии равновесия эту функцию для ионов X можно выразить количественно с помощью уравнения Нернста:

Е - равновесный потенциал (в вольтах)
R - универсальная газовая постоянная (2 кал моль -1 К -1)
Т - абсолютная температура (К; 37 °С = 307,5 К)
z - валентность ионов (электрический заряд)
F - число Фарадея (2,3 х 10 4 кал вольт -1 моль -1)
[Х]А - концентрация свободных ионов X в компартменте А
[Х]в - концентрация свободных ионов X в компартменте В

В формировании мембранного потенциала в клетках животных, главным образом, участвуют ионы К+, Na+ и Cl- . Ионы Са2+ и Mg2+ в меньшей степени участвуют в формировании мембранного потенциала покоя. Плазматическая мембрана обладает селективной проницаемостью к перечисленным ионам (т. е. мембрана содержит ионные каналы, селективные к каждому типу ионов). Это обстоятельство, а также мембранная проницаемость (Р) для каждого иона учитывается в уравнении Гольдмана-Ходжкина-Каца, которое представляет собой расширенную форму уравнения Нернста.

Для основных ионов это уравнение выражает мембранный потенциал как функцию их проницаемости и концентрации внутри (i) и снаружи (о) клетки:

Величина отрицательного мембранного потенциала покоя зависит от типа клеток и колеблется от -200 мВ до -20 мВ. В клетках млекопитающих мембранный потенциал покоя в основном создается при работе К+-каналов и ионного насоса, который называется Na+/К+-АТФаза. Основной вклад в формирование отрицательного мембранного потенциала вносит небольшой поток ионов К+ через плазматическую мембрану. Этот поток осуществляется через К+-каналы, лишенные воротного механизма (т. н. калиевые каналы покоя).

В отличие от большинства других К+-каналов , которым необходим сигнал для открытия, эти каналы в клетке, обладающей определенным потенциалом покоя, открыты постоянно. В покоящейся клетке также открыты несколько каналов для других ионов. Движение ионов К+ из клетки, по направлению электрохимического градиента, помогает клеточному содержимому поддерживать отрицательный заряд. Пока мы не знаем всех источников ионов калия, которые участвуют в этом процессе. В некоторых клетках, например у растений и бактерий, а также в митохондриях, мембранный потенциал покоя создается за счет градиента протонов, а не ионов К+.

Для того чтобы происходила диффузия ионов К+ из клетки через К+-каналы, их концентрация в клетке должна быть выше, чем в окружающей среде. Градиент концентрации создается в результате работы Na+/К+-АТФа-зы, которая закачивает в клетку два иона калия на каждые три иона натрия, которые этот ионный насос удаляет из клетки. Поэтому насос функционирует как генератор заряда: удаляется больше электрических зарядов, чем привносится к клетку. Таким образом, наряду с K+-каналами, лишенными воротного механизма, Na+/К+-АТФазы участвуют в создании отрицательного внутриклеточного потенциала. Если происходит инактивация Na+/K+-АТФаз, то концентрации ионов Na+ и К+ по обе стороны мембраны уравниваются. Это происходит потому, что липидный бислой очень плохо пропускает ионы. Иными словами, без прохождения первичных процессов активного транспорта с участием Na+/К+-АТФаз значение мембранного потенциала равнялось бы нулю.

Покоящейся клетки представляет собой довольно постоянную величину. Однако при связывании лигандов, механическом стрессе или при изменении электрического заряда происходит открытие специфических ионных каналов, и мембранный потенциал изменяется. Если ионные каналы находятся под контролем электрического заряда, то изменения мембранного потенциала влияют на прохождение через них ионов. Открытие и закрытие канала контролируются воротным механизмом (гейтингом). Мембранный потенциал зависит от тех ионов, для которых каналы в основном, открыты. Например, при открытии Na+- или Са2+-каналов происходит деполяризация мембраны.

При этом соответствующие ионы начинают поступать в клетку в направлении их . Это приводит к тому, что мембранный потенциал становится более положительным. Напротив, при реполяризации мембраны (гиперполяризации) потенциал становится еще более отрицательным. Это происходит при открытии калиевых каналов и выходе из клетки ионов К+ в направлении градиента, что и влечет за собой увеличение отрицательного мембранного потенциала. Движение ионов по ионным каналам происходит быстро и исчисляется миллисекундами. Для изменения мембранного потенциала достаточны лишь незначительные различия в концентрации ионов по сторонам мембраны, и основная концентрация их в клетке не меняется.
Поток лишь 10 -12 моль К+ через 1 см2 мембраны приводит к ее быстрой гиперполяризации и к установлению мембранного потенциала, равного -100 мВ. Локальное передвижение относительно небольших зарядов через мембрану позволяет цитозолю и внеклеточной среде оставаться электрически нейтральными и сводит к минимуму электрическое отталкивание зарядов.

Разобщители, например, динитрофенол, вызывают утечку Н через мембрану , сильно снижая электрохимический протонный градиент. Олигомицин специфически блокирует поток протонов через Рц 

Рис. 7-53. Изменения редокс-потенциала при прохождении электропов в процессе фотосинтеза с образованием NADPH и АТР) растений и цианобактерий. Фотосистема II очень похожа на реакционный центр пурпурных бактерий (см. рис. 7-50), с которым она эволюционно связана . Фотосистема I отличается от этих двух систем как полагают, она эволюционно родственна фотосистемам другой группы прокариот - зеленых бактерий . В фотосистеме I электроны возбужденного хлорофилла проходят через ряд прочно связанных железо-серных центров . Две последовательно соединенные фотосистемы обеспечивают суммарный поток электронов от воды к NADP с образованием NADPH. Кроме того, образуется АТР с помощью АТР-синтетазы (не показана) за счет энергии электрохимического протонного градиента, который создается электронтранспортной цепью , связывающей фотосистему II с фотосистемой I. Эту Z-схему образования АТР называют нециклическим фосфорилированием в отличие от циклической схемы , представленной на рис. 7-54 (см. также рис. 7-52).

    Когда к клеткам добавляют разобщающий агент, например динитрофенол, поглощение кислорода митохондриями значительно возрастает, так как скорость переноса электронов увеличивается. Такое ускорение связано с существованием дыхательного контроля . Полагают, что этот контроль основан на прямом ингибирующем влиянии электрохимического протонного градиента на транспорт электронов . Когда в присутствии разобщителя электрохимический градиент исчезает, не контролируемый более транспорт электронов достигает максимальной скорости , возможной при данном количестве субстрата. Напротив, возрастание протонного градиента притормаживает электронный транспорт , и процесс замедляется . Более того, если в эксперименте искусственно создать на внутренней мембране необычно высокий электрохимический градиент , нормальный транспорт электронов прекратится совсем, а на некоторых участках дыхательной цепи можно будет обнаружить обратный поток электронов Это последнее наблюдение позволяет предполагать, что дыхательный контроль отражает просто баланс между величинами изменения свободной энергии для перекачивания протонов , сопряженного с транспортом электронов , и для самого транспорта электронов или, другими словами, что величина электрохимического протонного градиента влияет как на скорость, так и на направление переноса электронов в принципе таким же образом, как и на направление действия АТР-синтетазы (разд. 9.2.3). 

Энергия, высвобождаемая в нроцессе переноса электронов по дыхательной цепи , запасается в форме электрохимического протонного градиента на внутренней мембране митохондрий  

Градиент рП (АрП) заставляет ионы П переходить обратно в матрикс, а ионы ОП из матрикса, что усиливает эффект мембранного потенциала (АУ), под действием которого любой положительный заряд притягивается в матрикс, а любой отрицательный выталкивается из него. Совместное действие этих двух сил приводит к возникновению электрохимического протонного градиента (рис. 7-19). 

Почти все бактерии, включая строгих анаэробов , поддерживают на своей мембране протонодвижущую силу Энергия электрохимического протонного градиента используется у них для вращения бактериального жгутика , что позволяет клетке передвигаться (разд. 12.5.4), и для 

Энергия электрохимического протонного градиента используется для синтеза АТР и транспорта метаболитов и неорганических ионов в матрикс  

На рис. 7-34 показаны уровни окислительно-восстановительного потенциала на различных участках дыхательной цепи . Резкий перепад имеет место в пределах каждого из трех главных дыхательных комплексов . Разность потенциалов между любыми двумя переносчиками электронов прямо пропорциональна энергии, высвобождаемой при переходе электрона от одного переносчика к другому (рис. 7-34). Каждый комплекс действует как энергопреобразующее устройство, направляя эту свободную энергию на перемещение протонов через мембрану, что приводит к созданию электрохимического протонного градиента по мере прохождения электронов по цепи. Такое преобразование энергии можно прямо продемонстрировать, включив по отдельности любой изолированный комплекс дыхательной цепи в липосомы (см. рис. 7-25). В присутствии подходящего донора и акцептора электронов такой комплекс будет переносить электроны , что приведет к перекачиванию протонов через мембрану липосомы. 

    Дыхательные ферментные комплексы сопрягают транспорт электронов, сопровождающийся выделением энергии , с откачиванием протонов из матрикса. Создаваемый при этом электрохимический протонный градиент доставляет энергию для синтеза АТР еще одним трансмембранным белковым комплексом -АТР-синтетазой, через которую протоны возвращаются в матрикс. АТР-синтетаза - это обратимый сопрягающий комплекс в норме он преобразует энергию потока протонов, направленного в матрикс, в энергию фосфатных связей АТР, но при уменьшении электрохимического протонного градиента он способен также использовать энергию гидролиза АТР для перемещения протонов из матрикса наружу. Хемиосмотические механизмы свойственны как митохондриям и хлоропластам, так и бактериям, что указывает на исключительную важность их для всех клеток. 

По мере прохождения высокоэнергетических электронов по дыхательной цепи протоны откачиваются из матрикса в каждом из трех ее участков, запасающих энергию. В результате этого между двумя сторонами внутренней мембраны возникает электрохимический протонный градиент, под действием которого протоны возвращаются обратно в матрикс через АТР-синтетазу - трансмембранный ферментный комплекс , использующий энергию протонного тока для синтеза АТР из ADP и Р. 

Рис. 9-36. Протонодвижущая сила , генерируемая на бактериальной плазматической мембране, обеспечивает перемещение в клетку питательных веществ и выведение наружу натрия. В присутствии кислорода (А) дыхательная цепь аэробных бактерий создает электрохимический протонный градиент, который используется АТР-синтетазой для синтеза АТР. В анаэробных условиях (Б) те же бактерии получают АТР в результате гликолиза. За счет гидролиза части этого АТР под действием АТР-синтетазы возникает трансмембранная протонодвижущая сила , осуществляющая транспортные процессы . (Как описано в тексте, существуют бактерии, у которых цепь переноса электронов откачивает протоны и при анаэробных условиях конечным акцептором электронов в этом случае служит не кислород, а другие молекулы.)
    Для выполнения этой задачи в клетках и была сформирована локализованная в ЦПМ АТФ-зависимая протонная помпа. Энергия гидролиза АТФ, осуществляемого АТФазой, использовалась для выталкивания протонов из клетки во внешнюю среду . Гидролиз одной молекулы АТФ приводит к переносу 2 протонов и созданию таким путем трансмембранного электрохимического протонного градиента. Экспериментально это было показано для молочнокислых бактерий и клостридиев, у которых нет дыхания, но в ЦПМ локализованы АТФазы, расщепляющие молекулы АТФ, образующиеся при брожении. 

Электрохимический протонный градиент создает протонодвнжущую силу, измеряемую в милливольтах (мВ). Так как градиент рП (АрН) в 1 единицу pH эквивалентен мембранному потенциалу около 60 мВ, протонодвижущая сила будет равна Л - 60 (АрН). В типичной клетке эта сила на внутренней мембране дышащей митохондрии составляет около 220 мВ и складывается из мембранного потенциала примерно в 160 мВ и градиента pH. близкого к - ] единице pH. 

По синтез АТР - это не единственный процесс, идущий за счет энергии электрохимического градиента . В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях , необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Поэтому через внутреннюю мембрану должны транспортироваться разнообразные несущие заряд субстраты. Это достигается с помощью различных белков-переносчиков , встроенных в мембрану (см. разд. 6.4.4). многие из которых активно перекачивают определенные молекулы против их электрохимических градиентов , т. е. осуществляют процесс , требующий затраты энергии . Для большей части метаболитов источником этой энергии служит сопряжение с перемещением каких-то других молекул вниз по их электрохимическому градиенту (см. разд. 6.4.9). Папример, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит по своему электрохимическому градиенту одна молекула АТР. В то же время система симпорта сопрягает переход фосфата внутрь митохондрии с направленным туда же потоком П протоны входят в матрикс по своему градиенту и при этом ташат за собой фосфат. Подобным образом переносится в матрикс и пируват (рис. 7-21). Энергия электрохимического протонного градиента используется также для переноса в матрикс ионов Са, которые, по-видимому, играют важную роль в регуляции активности некоторых митохондриальных ферментов большое значение может иметь и поглощение митохондриями этих ионов для удаления их из цитозоля, когда концентрация Са в последнем становится опасно высокой (см. разд. 12.3.7). 

Действие АТР-синтетазы обратимо она способна использовать как энергию гидролиза АТР для перекачивания протонов через внутреннюю митохондриальную мембрану, так и энергию потока протонов по электрохимическому градиенту для синтеза АТР (рис. 7-26). Таким образом , АТР-синтетаза - это обратимая сопрягающая система, которая осуществляет взаимопревращение энергии электрохимического протонного градиента и химических связей . Паиравление ее работы зависит от соотношения между крутизной протонного градиента и локальной величиной AG для гидролиза АТР. 

Ранее мы уже показали, что свободная энергия гидролиза АТР зависит от концентрации трех реагирующих веществ - АТР, ADP и Pi (см. рис. 7-22). AG для синтеза АТР - это та же величина, взятая с минусом. Свободная энергия перемещения протонов через мембрану равна сумме (1) AG для перемещения одного моля любых ионов между областями с разностью потенпиалов AV и (2) AG для перемещения моля любых молекул между областями с различной их концентрацией. Уравнение для протонодвижущей силы , приведенное в разд. 7.1.7, объединяет те же самые составляющие, но только разность концентраций заменена эквивалентным ей приращением мембранного потенциала , так что получается выражение для электрохимического потенциала протона . Таким образом , AG для перемещения протонов и протонодвижущая сила учитывают один и тот же потенциал, только в первом случае он измеряется в килокалориях, а во втором - в милливольтах. Коэффициентом для перевода из одних единиц в другие служит число Фарадея. Таким образом , AGh = -0,023 (протонодвижущая сила), где AGh + выражается в килокалориях на 1 моль (ккал/моль), а протонодвижущая сила - в милливольтах (мВ). Если электрохимический протонный градиент равен 220 мВ, то AGh = 5,06 

Если АТР-синтетаза в норме не транспортирует П из матрикса, то дыхательная цепь , находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит через эту мембрану протоны , создавая гаким образом электрохимический протонный градиент, доставляющий энергию для синтеза АТР. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды - пока весь кислород не израсходуется Во время такой вспышки дыхания с помощью чувствительного рП-электрода можно зарегистрировать внезапное подкислепие среды в результате выталкивания ионов П из матрикса митохондрий. 

Рис. 7-36. Перенос протонов через внутреннюю митохогвдриальную мембрану при участии разобщающего агента 2,4-динитрофенола (ДНФ) Заряженная (протонированная) форма ДНФ может свободно

В то время как искусственная липидная мембрана для ионов практически не проницаема, биологические мембраны содержат «ионные каналы », по которым отдельные ионы избирательно проникают через мембрану (см. ). Проницаемость и полярность мембраны зависят от электрохимического градиента , то есть от концентраций ионов по обе стороны мембраны (концентрационного градиента ) и от разности электрических потенциалов между внутренней и внешней сторонами мембраны (мембранного потенциала ).

В состоянии покоя клеток мембранный потенциал (потенциал покоя , см. ) составляет от −0,05 до −0,09 В, то есть на внутренней стороне плазматической мембраны преобладает избыток отрицательных зарядов. Потенциал покоя обеспечивается прежде всего катионами Na + и K + , а также органическими анионами и ионом Cl - (1). Концентрации снаружи и внутри клетки и коэффициенты проницаемости этих ионов приведены в таблице (2).

Распределение ионов между внешней средой и внутренним объёмом клетки описывается уравнением Нернста (3), где ΔΨ G - трансмембранный потенциал (в вольтах, В), то есть разность электрических потенциалов между двумя сторонами мембраны при отсутствии транспорта ионов через мембрану (потенциал равновесия ). Для одновалентных ионов при 25°С множитель RT/Fn равен 0,026 В. Вместе с тем из таблицы (2) следует, что для ионов K + ΔΨ G примерно равно −0,09 В, т. е. величина того же порядка, что и потенциал покоя. Для ионов Na + , напротив, ΔΨ G ≈ +0,07 В, то есть выше, чем потенциал покоя. Поэтому ионы Na + поступают в клетку при открытии Na + -канала. Неравенство концентраций ионов Na + и K + постоянно поддерживается Na + /K + -АТФ-азой при расходовании АТФ (см. ).

Статьи раздела «Сохранение энергии на мембранах»:

  • А. Электрохимический градиент

2012-2019. Наглядная биохимия. Молекулярная биология. Витамины и их функции.

Справочное издание в наглядной форме — в виде цветных схем — описывает все биохимические процессы. Рассмотрены биохимически важные химические соединения, их строение и свойства, основные процессы с их участием, а также механизмы и биохимия важнейших процессов в живой природе. Для студентов и преподавателей химических, биологических и медицинских вузов, биохимиков, биологов, медиков, а также всех интересующихся процессами жизнедеятельности.

Тейко Абэ

Как потеря электрохимического градиента приводит к выработке тепла?

Насколько я понимаю, разобщение потока протонов и АТФ-синтазы обеспечивает обход протонов между внешней и внутренней мембраной митохондрий, так что протоны не должны проходить через АТФ-синтазу на пути к матрица. Я вижу, как это приводит к потере электрохимического градиента. Но почему вырабатывается тепло?

AliceD ♦

По той же причине, что и при коротком замыкании батареи:) Тот же принцип, тот же эффект.

Ответы

Сатвик Пасани

Комментарий ALiceD совершенно правдив. (Хотя в реальных случаях короткое замыкание редко бывает абсолютным, так как обычно в проводе короткого замыкания имеется некоторое конечное сопротивление.)

Вы можете понять это двумя способами.

Интуитивно понятно , что разъединение обеспечивает канал для перемещения ионов водорода через мембрану в направлении их электрохимического градиента без какой-либо работы. Следовательно, энергию, которую он получает, пересекая разность потенциалов, можно считать преобразованной в кинетическую энергию, то есть ионы водорода ускоряются разностью потенциалов, которая заставляет их набирать скорость и, следовательно, двигаться с большей скоростью, чем в среднем последний отсек. Это приведет к увеличению столкновений (и более энергичных) с окружающими молекулами, что также немного увеличит их кинетическую энергию, что в конечном итоге увеличит среднюю кинетическую энергию, меру которой называют температурой. Если бы он был связан, ионы водорода не получили бы кинетическую энергию, так как энергия, которую они получают путем пересечения разности потенциалов, была бы использована для работы в механизме АТФ-синтазы.

Строго говоря , вы можете показать это, используя химическую термодинамику, которая включает в себя использование Δ G " role="presentation" style="position: relative;">Δ G Δ G " role="presentation" style="position: relative;"> Δ G " role="presentation" style="position: relative;">Δ Δ G " role="presentation" style="position: relative;">г функции, μ " role="presentation" style="position: relative;">μ μ " role="presentation" style="position: relative;"> μ " role="presentation" style="position: relative;">μ функции и некоторые связанные термодинамические переменные. Дайте мне знать, если вы хотите это объяснение (хотя я рискую потерять связь с математическим аспектом термодинамики)

PS: - Хотя термодинамическое объяснение также учитывает увеличение температуры из-за стертого градиента концентрации, это трудно объяснить с помощью предыдущей модели. Вы можете думать об этом, так как нейтрализация градиента концентрации изменяет количество столкновений на единицу объема (и времени), и, следовательно, также способствует наблюдаемому изменению температуры.

WYSIWYG ♦

Способ, которым вы объяснили механизм, очень хорош +1

Тейко Абэ

Спасибо за ваш ответ. Сейчас я вполне доволен интуитивным подходом. Я не уверен, что смогу полностью понять строгое математическое объяснение на данный момент, я чувствую, что сначала мне нужно немного почитать.

Перенос электронов по дыхательной цепи от NADH к кислороду сопровождается выкачиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство. На эту работу затрачивается часть энергии электронов, переносимых по ЦПЭ.

Протоны, перенесённые из матрикса в межмембранное пространство, не могут вернуться обратно в матрикс, так как внутренняя мембрана непроницаема для протонов. Таким образом, создаётся протонный градиент, при

котором концентрация протонов в межмембранном пространстве больше, а рН меньше, чем в матриксе. Кроме того, каждый протон несёт положительный заряд, и вследствие этого появляется разность потенциалов по обе стороны мембраны: отрицательный заряд на внутренней стороне и положительный - на внешней. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН+ - источник энергии для синтеза АТФ. Так как наиболее активный транспорт протонов в межмембранное пространство, необходимый для образования ΔμН+, происходит на участках ЦПЭ, соответствующих расположению комплексов I, III и IV, эти участки называют пунктами сопряжения дыхания и фосфорилирования (рис. 6-11, 6-13).

Механизм транспорта протонов через мито-хондриальную мембрану в пунктах сопряжения недостаточно ясен. Однако установлено, что важную роль в этом процессе играет KoQ. Наиболее детально механизм переноса протонов при участии KoQ изучен на уровне комплекса

KoQ переносит электроны от комплекса I к комплексу III и протоны из матрикса в межмембранное пространство, совершая своеобразные циклические превращения, называемые Q-циклами. Донором электронов для комплекса III служит восстановленный убихинон (QH2), а акцептором - цитохром с. Цитохром с находится с внешней стороны внутренней мембраны митохондрий; там же располагается активный центр цитохрома с1, с которого электроны переносятся на цитохром с.

В мембране существует стационарный общий фонд Q/QH2, из которого каждая молекула QH2 в одном цикле обеспечивает перенос протонов из матрикса в межмембранное пространство и электронов, которые в конечном итоге поступают на кислород. На работу, совершаемую при выкачивании протонов, расходуется часть свободной энергии, которая освобождается при переносе электронов по градиенту редокс-потенциала. Энергия электрохимического потенциала (ΔμН+) используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы.

Рис. 6-13. Сопряжение дыхания и синтеза АТФ в митохондриях. I - NADH-дегидрогеназа; II - сукцинат дегидрогеназа; III - QH2-дегидрогеназа; IV - цитохромоксидаза; V - ЛТФ-синтаза. Энергия протонного потенциала (электрохимического потенциала ΔμН+) используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы.

2. Строение АТФ-синтазы и синтез АТФ

АТФ-синтаза (Н+-АТФ-аза) - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов, обозначаемых как F0 и F1

Повышение концентрации протонов в межмембранном пространстве активирует АТФ-синтазу. Электрохимический потенциал ΔμН+ заставляет протоны двигаться по каналу АТФ-синтазы в матрикс. Параллельно под действием ΔμН+происходят конформационные изменения в парах α, β-субъединиц белка F1, в результате чего из AДФ и неорганического фосфата образуется АТФ. Электрохимический потенциал,

генерируемый в каждом из 3 пунктов сопряжения в ЦПЭ, используют для синтеза одной молекулы АТФ.